Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 3026, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321125

RESUMO

[NiFe]-hydrogenases have a bimetallic NiFe(CN)2CO cofactor in their large, catalytic subunit. The 136 Da Fe(CN)2CO group of this cofactor is preassembled on a distinct HypC-HypD scaffold complex, but the intracellular source of the iron ion is unresolved. Native mass spectrometric analysis of HypCD complexes defined the [4Fe-4S] cluster associated with HypD and identified + 26 to 28 Da and + 136 Da modifications specifically associated with HypC. A HypCC2A variant without the essential conserved N-terminal cysteine residue dissociated from its complex with native HypD lacked all modifications. Native HypC dissociated from HypCD complexes isolated from Escherichia coli strains deleted for the iscS or iscU genes, encoding core components of the Isc iron-sulfur cluster biogenesis machinery, specifically lacked the + 136 Da modification, but this was retained on HypC from suf mutants. The presence or absence of the + 136 Da modification on the HypCD complex correlated with the hydrogenase enzyme activity profiles of the respective mutant strains. Notably, the [4Fe-4S] cluster on HypD was identified in all HypCD complexes analyzed. These results suggest that the iron of the Fe(CN)2CO group on HypCD derives from the Isc machinery, while either the Isc or the Suf machinery can deliver the [4Fe-4S] cluster to HypD.


Assuntos
Proteínas de Escherichia coli , Hidrogenase , Proteínas Ferro-Enxofre , Escherichia coli/genética , Ferro/metabolismo , Proteínas de Escherichia coli/metabolismo , Hidrogenase/metabolismo , Domínio Catalítico , Cisteína/química
2.
FEBS Open Bio ; 13(2): 341-351, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36602404

RESUMO

Four Hyp proteins build a scaffold complex upon which the Fe(CN)2 CO group of the [NiFe]-cofactor of hydrogenases (Hyd) is made. Two of these Hyp proteins, the redox-active, [4Fe-4S]-containing HypD protein and the HypC chaperone, form the basis of this scaffold complex. Two different scaffold complexes exist in Escherichia coli, HypCD, and the paralogous HybG-HypD complex, both of which exhibit ATPase activity. Apart from a Rossmann fold, there is no obvious ATP-binding site in HypD. The aim of this study, therefore, was to identify amino acid motifs in HypD that are required for the ATPase activity of the HybG-HypD scaffold complex. Amino acid-exchange variants in three conserved motifs within HypD were generated. Variants in which individual cysteine residues coordinating the iron-sulfur ([4Fe-4S]) cluster were exchanged abolished Hyd enzyme activity and reduced ATPase activity but also destabilized the complex. Two conserved cysteine residues, C69 and C72, form part of HypD's Rossmann fold and play a role in HypD's thiol-disulfide exchange activity. Substitution of these two residues individually with alanine also abolished hydrogenase activity and strongly reduced ATPase activity, particularly the C72A exchange. Residues in a further conserved GFETT motif were exchanged, but neither hydrogenase enzyme activity nor ATPase activity of the isolated HybG-HypD complexes was significantly affected. Together, our findings identify a strong correlation between the redox activity of HypD, ATPase activity, and the ability of the complex to mature Hyd enzymes. These results further highlight the important role of thiol residues in the HybG-HypD scaffold complex during [NiFe]-cofactor biosynthesis.


Assuntos
Proteínas de Escherichia coli , Hidrogenase , Hidrogenase/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Cisteína/metabolismo , Oxirredução , Adenosina Trifosfatases/metabolismo , Chaperonas Moleculares/metabolismo
3.
Front Microbiol ; 13: 872581, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35422773

RESUMO

The biosynthesis of the NiFe(CN)2CO organometallic cofactor of [NiFe]-hydrogenase (Hyd) involves several discreet steps, including the synthesis of the Fe(CN)2CO group on a HypD-HypC scaffold complex. HypC has an additional function in transferring the Fe(CN)2CO group to the apo-precursor of the Hyd catalytic subunit. Bacteria that synthesize more than one Hyd enzyme often have additional HypC-type chaperones specific for each precursor. The specificity determinants of this large chaperone family are not understood. Escherichia coli synthesizes two HypC paralogs, HypC and HybG. HypC delivers the Fe(CN)2CO group to pre-HycE, the precursor of the H2-evolving Hyd-3 enzyme, while HybG transfers the group to the pre-HybC of the H2-oxidizing Hyd-2 enzyme. We could show that a conserved histidine residue around the amino acid position 50 in both HypC and HybG, when exchanged for an alanine, resulted in a severe reduction in the activity of its cognate Hyd enzyme. This reduction in enzyme activity proved to be due to the impaired ability of the chaperones to interact with HypD. Surprisingly, and only in the case of the HybG H52A variant, its co-synthesis with HypD improved its interaction with pre-HycE, resulting in the maturation of Hyd-3. This study demonstrates that the conserved histidine residue helps enhance the interaction of the chaperone with HypD, but additionally, and in E. coli only for HybG, acts as a determinant to prevent the inadvertent maturation of the wrong large-subunit precursor. This study identifies a new level of control exerted by a bacterium synthesizing multiple [NiFe]-Hyd to ensure the correct enzyme is matured only under the appropriate physiological conditions.

4.
Sci Rep ; 11(1): 24362, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34934150

RESUMO

[NiFe]-hydrogenases activate dihydrogen. Like all [NiFe]-hydrogenases, hydrogenase 2 of Escherichia coli has a bimetallic NiFe(CN)2CO cofactor in its catalytic subunit. Biosynthesis of the Fe(CN)2CO group of the [NiFe]-cofactor occurs on a distinct scaffold complex comprising the HybG and HypD accessory proteins. HybG is a member of the HypC-family of chaperones that confers specificity towards immature hydrogenase catalytic subunits during transfer of the Fe(CN)2CO group. Using native mass spectrometry of an anaerobically isolated HybG-HypD complex we show that HybG carries the Fe(CN)2CO group. Our results also reveal that only HybG, but not HypD, interacts with the apo-form of the catalytic subunit. Finally, HybG was shown to have two distinct, and apparently CO2-related, covalent modifications that depended on the presence of the N-terminal cysteine residue on the protein, possibly representing intermediates during Fe(CN)2CO group biosynthesis. Together, these findings suggest that the HybG chaperone is involved in both biosynthesis and delivery of the Fe(CN)2CO group to its target protein. HybG is thus suggested to shuttle between the assembly complex and the apo-catalytic subunit. This study provides new insights into our understanding of how organometallic cofactor components are assembled on a scaffold complex and transferred to their client proteins.


Assuntos
Monóxido de Carbono/metabolismo , Cianetos/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Compostos Ferrosos/metabolismo , Hidrogenase/metabolismo , Chaperonas Moleculares/metabolismo , Monóxido de Carbono/química , Domínio Catalítico , Cianetos/química , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Compostos Ferrosos/química , Hidrogenase/química , Hidrogenase/genética , Espectrometria de Massas , Chaperonas Moleculares/genética , Proteínas/genética , Proteínas/metabolismo
5.
Microbiology (Reading) ; 165(8): 905-916, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31259680

RESUMO

The three nitrate reductases (Nar) of the saprophytic aerobic actinobacterium Streptomyces coelicolor A3(2) contribute to survival when oxygen becomes limiting. In the current study, we focused on synthesis of the Nar2 enzyme, which is the main Nar enzyme present and active in exponentially growing mycelium. Synthesis of Nar2 can, however, also be induced in spores after extended periods of anoxic incubation. The osdRK genes (oxygen stress and development) were recently identified to encode a two-component system important for expression of the nar2 operon in mycelium. OsdK is a predicted histidine kinase and we show here that an osdK mutant completely lacks Nar2 enzyme activity in mycelium. Recovery of Nar2 enzyme activity was achieved by re-introduction of the osdRK genes into the mutant on an integrative plasmid. In anoxically incubated spores, however, the osdK mutant retained the ability to synthesize NarG2, the catalytic subunit of Nar2. We could also demonstrate that synthesis of NarG2 in spores occurred only under hypoxic conditions; anoxia, as well as O2 concentrations significantly higher than 1 % in the gas-phase, failed to result in induction of NarG2 synthesis. Together, these findings indicate that, although Nar2 synthesis in both mycelium and spores is induced by oxygen limitation, different mechanisms control these processes and only Nar2 synthesis in mycelium is under the control of the OsdKR two-component system.


Assuntos
Histidina Quinase/metabolismo , Micélio/metabolismo , Nitrato Redutase/biossíntese , Esporos Bacterianos/metabolismo , Streptomyces coelicolor , Aerobiose , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Histidina Quinase/genética , Hipóxia , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo
6.
J Bacteriol ; 201(11)2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30858301

RESUMO

Spores have strongly reduced metabolic activity and are produced during the complex developmental cycle of the actinobacterium Streptomyces coelicolor Resting spores can remain viable for decades, yet little is known about how they conserve energy. It is known, however, that they can reduce either oxygen or nitrate using endogenous electron sources. S. coelicolor uses either a cytochrome bd oxidase or a cytochrome bcc-aa3 oxidase supercomplex to reduce oxygen, while nitrate is reduced by Nar-type nitrate reductases, which typically oxidize quinol directly. Here, we show that in resting spores the Nar1 nitrate reductase requires a functional bcc-aa3 supercomplex to reduce nitrate. Mutants lacking the complete qcr-cta genetic locus encoding the bcc-aa3 supercomplex showed no Nar1-dependent nitrate reduction. Recovery of Nar1 activity was achieved by genetic complementation but only when the complete qcr-cta locus was reintroduced to the mutant strain. We could exclude that the dependence on the supercomplex for nitrate reduction was via regulation of nitrate transport. Moreover, the catalytic subunit, NarG1, of Nar1 was synthesized in the qcr-cta mutant, ruling out transcriptional control. Constitutive synthesis of Nar1 in mycelium revealed that the enzyme was poorly active in this compartment, suggesting that the Nar1 enzyme cannot act as a typical quinol oxidase. Notably, nitrate reduction by the Nar2 enzyme, which is active in growing mycelium, was not wholly dependent on the bcc-aa3 supercomplex for activity. Together, our data suggest that Nar1 functions together with the proton-translocating bcc-aa3 supercomplex to increase the efficiency of energy conservation in resting spores.IMPORTANCEStreptomyces coelicolor forms spores that respire with either oxygen or nitrate, using only endogenous electron donors. This helps maintain a membrane potential and, thus, viability. Respiratory nitrate reductase (Nar) usually receives electrons directly from reduced quinone species; however, we show that nitrate respiration in spores requires a respiratory supercomplex comprising cytochrome bcc oxidoreductase and aa3 oxidase. Our findings suggest that the Nar1 enzyme in the S. coelicolor spore functions together with the proton-translocating bcc-aa3 supercomplex to help maintain the membrane potential more efficiently. Dissecting the mechanisms underlying this survival strategy is important for our general understanding of bacterial persistence during infection processes and of how bacteria might deal with nutrient limitation in the natural environment.


Assuntos
Citocromos b/metabolismo , Citocromos c/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Regulação Bacteriana da Expressão Gênica , Complexos Multienzimáticos/metabolismo , Nitrato Redutase/metabolismo , Streptomyces coelicolor/enzimologia , Citocromos b/genética , Citocromos c/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Teste de Complementação Genética , Loci Gênicos , Hidroquinonas/metabolismo , Complexos Multienzimáticos/genética , Mutação , Nitrato Redutase/genética , Nitratos/metabolismo , Oxirredução , Ligação Proteica , Esporos Bacterianos/enzimologia , Esporos Bacterianos/genética , Streptomyces coelicolor/genética
7.
J Mol Microbiol Biotechnol ; 28(6): 255-268, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30861513

RESUMO

Streptomyces coelicolor A3(2), an obligately aerobic, oxidase-positive, and filamentous soil bacterium, lacks a soluble cytochrome c in its respiratory chain, having instead a membrane-associated diheme c-type cytochrome, QcrC. This necessitates complex formation to allow electron transfer between the cytochrome bcc and aa3 oxidase respiratory complexes. Combining genetic complementation studies with in-gel cytochrome oxidase activity staining, we demonstrate that the complete qcrCAB-ctaCDFE gene locus on the chromosome, encoding, respectively, the bcc and aa3 complexes, is required to manifest a cytochrome oxidase enzyme activity in both spores and mycelium of a qcr-cta deletion mutant. Blue-native-PAGE identified a cytochrome aa3 oxidase complex of approximately 270 kDa, which catalyzed oxygen-dependent diaminobenzidine oxidation without the requirement for exogenously supplied cytochrome c, indicating association with QcrC. Furthermore, higher molecular mass complexes were identified upon addition of soluble cytochrome c, suggesting the supercomplex is unstable and readily dissociates into subcomplexes lacking QcrC. Immunological and mass spectrometric analyses of active, high-molecular mass oxidase-containing complexes separated by clear-native PAGE identified key subunits of both the bcc complex and the aa3 oxidase, supporting supercomplex formation. Our data also indicate that the cytochrome b QcrB of the bcc complex is less abundant in spores compared with mycelium.


Assuntos
Proteínas de Bactérias/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Transporte de Elétrons , Oxirredutases/metabolismo , Streptomyces coelicolor/enzimologia , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...